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We introduce a new method for solving systems of one-dimensionat
hyperbolic partial differential equations and present the first applica-
tions of this method. The piecewise linear interpolation method PLIM
15 shown 10 have the capability to preserve the shape of a propagating
distribution and great applicability. Various difficult flow problems,
such as the strong convection problom, the convection dilfusion
problem, and the reaction-diffusion problem, have been solved. In
addition, the approximate hyperholic equations technique (AHET) to

handle the diffusion terms is introduced. ¢ 1994 Academic Press, Inc.

1. INTRODUCTION

A primary problem in computational luid dynamics
has been in the aveidance of the typical numerical errors in
solutions to hyperbolic partial differential equations. These
crrors, often called numerical diffusion and numerical
dispersion, cause erroncous damping and oscillations
in the most essential part of the solution. The numerical
solutions by standard discretization methods converge to
the rigorous solution very slowly when the mesh size is

decreased. and, e.g. the finite element method (FEM)-

suitable to many numerical problems does not yield
essential gains over more elementary methods.

We antroduce a new shape-preserving characteristics
micthod, piccewise linear interpoiation method, PLIM [17],
lor sobving onc-dimensional hyperbolic equations and show
the results ol its [irst applications.

The goat of the development work of PLIM was to creale
a numerical scheme which is applicable and accurate always
when conventional methods are accurate and which is
able to treat propagating piecewise lincar distributions
accurately on a mesh grid. In the one-dimensional time-
dependent case, interpolation with the piecewise lingar
polynomial approximation containing two unknown
parameters yields the desired shape preserving scheme. The
conservation laws are not violated either. The discretization
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mesh needed and the numerical performance of the solution
procedure are in direct proportion to the physical com-
plexity.

A numerical method should be applicable to soive
problems as geuncrally as possible. In this paper we show
that PLIM is capable of solving gencral problems using
within itsclf conventional local lincarization of the lunctions
including unknown variables.

Although simple solutions can be achieved accurately, it
is difficult to ensure that there are no other numericai dif-
liculties when more challenging problems are solved. Hence -
we have applied PLIM to solve various flow problems. It
has been applicd very successfully to the transport of a
scalar quantity, adiabatic gas flow in a pipe, stratified two-
phase flow, dynamics of the slip between phases in two-
phase flow, gas dynamics, and various convection—diffusion
problems and, more generally. to problems with derivatives
of second order.

PLIM solutions makes it possible to achieve a converged
solution with a very simple procedure by solving PLIM
equations in both directions on the computational mesh.
This is advantageous when parallel computing is used.
The convergence of the method has been illustrated by
numerical examples,

The basic idea of PLIM is to represent the unknown
variables at ¢ach boundary of the mesh cell in terms of
a piccewise linear approximation, Other kinds of shape-
preserving methods which use information within the mesh
cell are deseribed. for example, in [10 127,

Since PLIM is capable of preserving the shape of a
propagating distribution, physical diffusion is not more
suppressed by numerical errors, and it is very essential to
govern diffusion in the framework of PLIM. Convection—
diffusion is generally considered to be a very challenging
problem, particularly with strong convection.

A particular technique utilizing PLIM has been
developed for equations containing diffusion terms. The
technique allows the diffusion process to propagate together
with a propagating fromt. M is shown that with these
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equations, quite complicated convection—diffusion and
reaction—diffusion problems can be solved successfully.

2. BASIS OF THE PIECEWISE LINEAR
INTERPOLATION METHOD

PLIM and the corresponding computer code are applied
to one-dimensional partial differential equations of the first
order,

i, 0
il _F= 1
2 U+ o F=P, (1)
where
U=Ulw,z¢)
F=F(u z1)
P=P(y,:z, 1)

and u is the unknown variable vector, whose dimension is
equal to the number of equations.

The equations are programmed into the code in the
following form. The different flow problems presuppose
only different function-type-like subroutines for U, F, and
P. If the equation system is not originally in conservation
form, P includes numerical approximations of the terms
that cannot be represented by U and ¥.

The z-t space is assumed to be divided into rectangular
mesh cells as shown in Fig. 1. In these cells the Jacobian
matrices

2
W= 0dF/du )

are evaluated by numerical differences. In the present ver-
sion of the computer code they are assumed to be constant
in each mesh cell. In addition W, must not be singular, ie.,
W' must exist.

63
In the mesh cell, PLIM approximates

U=U,+Wy(e—u,(z1)
F=F,+Wgu—u,l(z1)

(3)
(4)

where the subscript L refers to linear z-+ dependent vector
functions and forms the celiwise constant velocity matrix

It follows that U satisfies the equation
i, ad

where P,, =P — (8/6z)(F, —VU,).

To form equations that are suitable for the application of
the piecewise linear interpolation method the matrix V is
diagonalized

V=5S8! (7)

where v is a diagonal matrix, which includes eigenvalues of
matrix V, ie., the characteristic velocities of the equation
system. The Eq. {1) is an initial value problem in respect of
time, thus if the problem is well-posed, all the eigenvalues
have to be real. Multiplying Eq. (6) by S ~! yields

—X+¥Y —X=

at 0z (8)

p.

where x =81, p=8~!p,,. Hence, N linear uncoupled
equations in the mesh cell have been derived. Now x may be
solved using piecewise linear interpolation. The original
vector functions U and F relate approximately to x in
Eq. (8) as

U=S8x

» (9)
F=Sy(x—S~'U,)}+F,

z Az z

j-1
FIG. 1.

b

Discretization mesh.
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and as well as that in Eq.(8) U and F have to satisfy
continuity conditions at the boundaries of the mesh cell.

Equation (8) forms a set of independent scalar equations
which can be solved separately. Concerning each transport
being described by them, the direction of v defines the
incoming and outgoing boundaries in the mesh ceil
The solution to each scalar equation according to the
characteristic method is

y=xo+| par, (10)
where x, is the interpolated value of x at the incoming
boundary of the mesh ceil and the integral term is taken
along the propagating path.

The major problems in the solution are related to x,. If
there is no information on the distribution of the variable x
in the mesh cell, an accurate numerical solution can be
achieved only in the very special case of v A1/dz =1

The interpolation scheme has the following propertics:

— Itis such that any distribution at the boundary of the
mesh cell can be reasonably approximated.

— Tt preserves the shape of the propagating distribution
in some sense.

— Conservation of x in the mesh celi can be satisfied.

—  Qvershoots and uncontrolled strong variations can
be avoided.

— The propagation of a front within a mesh cell is
described, because fronts are very common in flow
problems.

— Tt uses values of only one mesh interval, because then
no extra schemes are needed for the end points or for the
discontinuity points of the z-interval.

The basic idea of PLIM is to form the distribution of x
within the mesh cell by representing the unknown variables
at each boundary of the mesh cell in terms of a piecewise
linear approximation. Obviously this makes it possible to
obtain the propagating ramp solution rigorously.

Define in the interpolated interval

x(0)=x, + Ax(8), ge[0, 1], (11)

where x, means linear dependence between the endpoints
and Ax(#) is the deviation from x, . Defining the zeroth and
first central moment for piecewise linear function Ax(8),
which has values Ax; at the points 6,, one obtains

1
my=| Ax(0)d0=1F (6;,,~0;_)) A,
o i

m (12)

o

jl (6 — 1) 4x(0) do
0

£ (0 =0, 0,5+ 0,581} Ax;— 3¢,

i

These moments are extremely good parameters, since they
relate directly to the conservation and shape of 4x(8).
Consider the construction of Ax(f) in a normalized case
as shown in Fig. 2; at the endpoints x(0)=x,=0 and
x(1)=x,=1, The conditions to limit the overshoots.
undershoots, and the uncontrolled variations of x are

0<x(0)< 1

dx(8)] 1
S?’
db d

(13

where & is a numeric parameter. In the general case it is
defined as

0=20,/|x;—x,|+9,. (14}
Values 4, =10"7 and §,=0.05 have been used in all the
following numerical examples.

Under these conditions two piecewise linear approxi-
mating function families can be constructed: the triangular
approximations and the front-type approximations. These
typical approximating functions are shown in Fig. 2 [1].
Variables Ax, and 8, in the triangular approximation or 8,
and 8, in the front-type approximation can be found using
Egs. (12}, and hence any values Ax(f) may be evaluated.

The triangular approximation with the top at positions §,
and heights Ax, results in

GEA:(,,, when <6,
Ax(0) = 1"_9 (15)
Ax,, when 8,<6
18,
FaS
X
1
!
|
| A
P
I / I
|/
|7 |
/( B%n;
I l
I
0 - >

FIG. 2. WNormalized piecewise linear approximations.
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and the front-type approximation leads to

0, when 0<8,,
x{6) =< linear, when 0, <0<8,, {16)
1, when 0,.<6.

The next task is to determine the parameters 8, dx, or @}, ,
#,, as functions of mg and m,. The conditions defined in
Eq. (13) restrict the acceptable values of these moments.
Hence 4x(#) must be determined using the values

1

gl 5 (1-3)

(17)
4 1 2
—(2 |y —mmé)smm<(§|mol) -*352,

where nt,, = 6m_+ 4dmi — ).

The new parameter m,, replacing m, is very useful,
because it works as a pattern-recognizing parameter for
different piecewisc linear approximations, namely,

m, <0, triangular approximation

(18)

m,, >0, front-type approximation.

Direct appiication of Eqgs.(12), when m,, <0, yields
equations for Ax, and 8, in the triangular approximation

Ax,=2mg,
Im,. 1 (19)
0,, = m—o + 5
and, when m,, > 0, for the front-type approximation,
Ghl’ 81:22%_m0i [(15_ Wml)nz_mm]”z' (20)

Equations (11)-(20) show how the piecewise linear dis-
tribution of x{8) can be represented at all boundaries of the
mesh cell. The complete representation for one mesh ceil is
composed of four x-values at the corner points and four
mq-values and four m,-values at the boundaries as shown
in Fig, 3. In the mesh cell calculations the values at the
incoming boundaries can be considered as known.

Now the unknown value x,, Fig. 3, can be obtained by
direct application of Egs. {10), (11), {15), {16) and, since
Ax(6) is available, the moments n1,(0;) and m(8,) for the
partial interval [8,, 17 can be formed and transferred,
after some scaling, to the known values of the outgoing
boundary.

Two moment values must still be calculated. Since all the

m,
lllc 4
X, X,
B, m, 5
mc 2 mc 3
xy my, 6 X,
mc 1

FIG. 3. Variables in the mesh cell.

X; are now known, moments can be cbtained from the
equation

d é
—Ax+v~-dx=p,,

21
ot oz (21)
where
0 0
p,,,:axL+vEx,,+p.
Define
0 =t—!0 1
At
fo= 245
) (22)
k=vij£
Az

Pm= P0+P:6¢-r+[’z9e:-

Denote the moments along the t-axis and along the z-axis
by subscripts ¢ and z, respectively and the z-moments at the
former time t, by the supercript 0, and the -moments in
flow direction by the subscripts 1 and 2. Integrating Eq. {21)
over the mesh cell produces an equatin for my, and rg,,

My, — mg.—"‘ k(my,, — 1y, )= 41 py.

(23)
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An equation for s, or m_ . can be formed by multiplying
Eq. (21) by 8., — k8., and integrating over the mesh cell:

0 2
m..—m.— k (m('fZ - mr-.’l)
0
—k(my. 4+ mgy, —mg,, —mg,, )/2

={(p.—kp,) 41/12. (24)
Five unknown variables per mesh cell can be solved by the
preceding procedure, viz. x, my,, M., My., M. The values
my. and m_. are needed only when the procedure is applied
at the next time-step. The moments m, and m_, in Fig. 3 are
equal to either my, and m,, or m,, and m_., depending on the
interpolation case.

The solution of the variable x has now been defined in
one mesh cell. When the velocity matrices V are different in
neighbouring mesh cells the values of x and the moments m,
and m_cannot be directly transferred to the other mesh cell.
The continuity conditions have to be based on the original
functions U and F in Eq. (1). The conservation property
determines that U has to be treated as temporally con-
tinuous and F as spatially continuous.

At the new time suitable continuity conditions are

U =ut at

F-=F"* at z=z;, t=1,
(25)
j (U——UL)drzj (U+—U,)dt
At At
| b.U-Upe=] 0. Ur-U e,
Az Az

where superscripts — and + refer to the values before and
after a time t,. These conditions are always used at the new
time to evaluate U%, F', m{_, and m?..

The conditions for the spatial continuity are

U_=U, at
F_=F, at z=z,

L (F_—FL)dr=J (F, —F,)dr

Aar

J 0.(F_—F,) dr=_[

0. (F.—F,}d,
At At
where subscripts — and + refer to the values before and
after the mesh point z,. To satisfy these four conditions a
new vectory,

y=v(x—S'U,)+S7'F,, 27

and the corresponding moments m,,, and m,,, have to be

eyt

defined. Hence the four conditions in Eq. (26) couple the
variables x, y, mg,, and m_, in the z-direction and form the
system of equations, which solutions can be utilized in
determination of the new values at the incoming boundary
of the mesh cell.

The following procedure was used to satisfy the boundary
conditions at the boundaries of the mesh cell. The variable
is known by the side into which it propagates. Define a vee-
tor 8, which has the value 8,= 1, when at the boundary the
characteristic velocity points in the direction of the z-axis
and 0, = 0 otherwise. Then it is possible to define deviations
Ax,, 4¥,, dmg,, 4m,, al the boundaries, for example for
X, as

x_=x,+(I-0,) 4x, (28)

X, =X,—8,4x,;

where x, refers to values which are propagated to the
boundary. Now the A4x, can be solved;

Ax,=Tx,, (29)
where T=(8S_(1—-0,)+S,0,)""' (S, —S_).

Now the complete procedure for solving hyperbolic
partial differential equations of first order using piecewise
linear interpolation method has been presented.

In the general case, when there are characteristic
velocities in both directions and the Courant condition
(k < 1) is satisfied at least in one direction, one cycle of suc-
cessive mesh cell computations in both directions is needed
for the solution. In the more general case, when charac-
teristic velocities are in different directions and the Courant
condition is not satisfied in either direction, two to three
iterations in both directions are needed. Further, to improve
accuracy iterative evaluations of the vector functions, U, F,
and P, as well as Jacobian matrices W, and W, are
required.

When complicatedly coupled equations of N variables are
solved numerically a computational time per mesh cell must
be with any method ~ N Generally this is much more than
the needed additional effort in the PLIM procedure to solve
N scalar equations.

3. THE APPROXIMATE HYPERBOLIC EQUATIONS
TECHNIQUE (AHET) TO HANDLE PROBLEMS WITH
DERIVATIVES OF SECOND ORDER

It is usual in different kinds of flow problems that a diffu-
sion or viscosity term is involved, and one must also be able
to handle derivatives of second order. In strongly convective
cases, it is not sufficient to use simple numerical differentia-
tion for these derivatives. The diffusion process should
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propagate together with the flow. Qur solution to the puzzle
is the following.
The convection—diffusion equation

¢ é .0

= —u-—A—u=
atu-kvazu FR Zu Fu) (30)
can be written as two equations:
d 0
o+ Y= flu), 31
=t 2 (out ) =) G1)
2-%:4: - (32)

Any numerical method explicit in time would result in an
expression which can be put into the source term P, but here
the latter equation has been approximated by a partial
differential equation of first order,

d . d . , 0 .
g(aj+va—h;j)+/.azu——j, (33)

where ¢ is a chosen small parameter ~ At
A hyperbolic equation system has been created, which
has characteristics
v, =v+ (e} (34}
To study errors of the method, j can be represented
according to Eq. (33) in the form

1
= _ﬁ.fj e Ty ik, (35)

e

where the convolution integral is taken in the p-velocity
Lagrangian co-ordinate system. If then the derivative u_ is
not changed by a great amount during the time interval of
the order of ¢, the approximation has good accuracy. One
can observe that the reguirement is not more restrictive
than used in general for parabolic equations. The
approximate hyperbolic equations technique (AHET)
causes the distribution « and its diffusion to propagate
together also in the numerical sense,

The equations obtained are of the form in Eq. (1) and can
be solved similarly. Hence no separate diffusion model is
necessarily needed in the code.

There are also physical reasons for the form in Eq. (33)
[27, but here ¢ has to be chosen purely on a numerical basis.
If & is too large, the diffusion current j does not follow the
original definition accurately enough. If & is too small, the
code is not capable of handling the P-term. We suggest
choosing &= 4¢#/2. However, one must be careful not to

allow the value of ¢ to be unreasonably small. The size of the
time-step is, of course, dependent on the time scale of the
problem.

4. NUMERICAL RESULTS

The numerical experiments calculated by PLIM and
presented in this paper are gathered together into Table I
PLIM itself is capable of treating frontal phenomena
accurately, but the linear approximation with constant
Jacobian matrices in Eqgs. {3)-(4) is not necessarily valid in
all types of fronts. If the Jacobian matrices do not differ
appreciably from each other on both sides of the front, one
can expect accurate resuits.

4.1. Horizontal Stratified Flow

In the first two examples the equations are the same as
those used for testing the TRAC code [3]. Neglecting fric-
tion terms, assuming the interfacial pressure to be constant,
and only considering the hydrostatic pressure, momentum
and continuity equations can be written in the form

i) é 71,
_— — 1=t = 3
az”+az(2” +gh) 0 (36)
é d
—A+—Av=
61A+62 v=10, (37)

where h=liquid level, 4 = cross-sectional area of liquid,
and v = liquid velocity.
With the notations used in Eq. (1)

U= (v, A)T
F=(iv2+gh Av)’ (38)
P=(0, O)T. ’
The unknowns are v and i; 4 = A(h).
TABLEI
Example Problem definition Ref. Figs.
| Dam break into a [3] 4-7
stratified water layer
2 Dam break into dry channel [3] 8
3 Sad problem [4, 351 9-10
4 Lax Problem [4,5] 11
5 Reaction-diffusion [6] 12
6 Convection-diffusion [7.8] 13-14
7 Burgers equation [9] 15
Symetric wave
8 Burgers equation: [6] 16

symmetric wave
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ExampLE 1. A dam break into a stratified water layer
has been solved [3]. There is a 10 m long channel, 1 m in
diameter. At time r<0 the liquid level (liquid frac-
tion = (0.53) in the left-hand side of the channel is higher
than in the right-hand side (liquid fraction = 0.45). At time
t =0 the dam s removed and the motion of the liquid profile
is calculated on both sides of the dam. Both ends of the
channel are closed.

In Figs. 4-6 are the results of this problem. The solid
line is an analytical solution [3]. A discretization mesh
At=0.01 and Az =0.125 was used in Figs. 4-5, Ar=0.4 and
4z=0.5 in Fig. 6. The results calculated with PLIM are
very good. Even when fairly coarse discretization is used,
both the depression wave moving to the left and the bore
moving to the right can be described very accurately. TRAC
results from [3], where the used maximum timestep
4:=0.01 for both space discretizations, make clear how
numerical dispersion may affect the solution. Especially
interesting is Fig. 6, where PLIM results are obtained with
five time-steps, while TRAC has used at least 200 time-steps.
In Fig. 7 the formation of the liquid profile is shown.

ExampLE 2. Another dam break problem, a dam break
into a dry channel, has also been calcuiated. The difference
between this and the first problem is that it is no longer a
question of a small perturbation. Here we have a 30 m long
channel, 1 m in diameter, where on the right-hand side there
is a 10 m long reservoir, where 40 % of a cross-sectional area
is occupied by liquid. The left-hand side of the channel is
open. At time ¢ =0s the dam is removed and the behaviour
of the water level in the reservoir is calculated.

In Fig. 8 the water profile is at time 5.6 5. The solid line is

Dam break
time = 2¢

liquid fraction

z/m

FIG. 4. Liquid fraction profile at time r = 25, The depression wave and
bore travelling away from the dam-break. The solid line is an analytical
solution. TRAC results are from [3].

Dam break
time = ds

liquid fraction

B.49

zZ/m

FIG. 5. Liquid fraction profile at time t = 4s. The reflected refraction
wave and bere moving towards the dam-break. The solid line is an
analytical solution. TRAC results are from [3].

an analytical solution [3]. The time when the depression
wave should reach the right-hand side of the reservoir is
566 s. This is predicted by PLIM quite accurately. The
slight error near the break is caused by characteristic
velocities, which change their sign there.

4.2. Gas dynamics

We have also applied the method for the Euler equations
of gas dynamics. Two different Riemann problems known as

Dam break
time = 2%

liquid fraction

zZ/m

FIG. 6. Liquid fraction profile at time ¢=2s computed with coarse
discretization. The solid line is an analytical solution. TRAC results are
from [3].
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Liquid fraction profile at time ¢ = 5.65 {Example 2}. The solid
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the Sod problem and the Lax problem are solved. The

equations used are as in [4, 5]
where p, v, p, E are the density, velocity,

FIG. 8.
line is an analytical solution.
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0.87 | “\‘;‘\\\
P
B s

A
TILTLEAS
\\\“‘ 1.‘“\‘ .

FIG. 10. The formation of the density distribution in the Sod problem.

the middle zone 10 cells have 4z = 0.05. In Fig. 9 the density
distributions at time r=2 are calculated. The time-steps
used are 4t =0.04 (solid line) and 47 =20.1 (plots). When
comparing the results to the converged reference solutions
in {4, 5], one may regard a solution with 4+=0.04 as an
exact solution and, even in the solution calculated with
longer time-steps, the discontinuities are very sharp,
although slight numerical errors do exist, particularly in
smoother regions. In Fig. 10 the density distribution is a
function of time and place.

ExaMPLE 4. In the Lax problem the initial conditions

are

(L. b, p;) = (0445, 0,698, 3.528),
(pRs UR,PR) = (05, 0, 0.571 }

(44)

The space discretization is the same as above but the time-
step used is A¢ = 0.01. In this case numerical errors are small
as well. The heights of the variations in the density in Fig. 11
may be regarded as accurate when compared to the
converged reference solutions in [4, 5]. However, there are
some minor oscillations in the solution, obviously because
of the constant characteristic velocities used in the mesh cell.
The results to these Riemann problems are fully competitive
with the calculated results of the ENO schemes presented
in [4, 5].

4.3. A Scalar Reaction-Diffusion Problem from Combustion
Theory

ExaMpLE 5. In this problem an equation of the
form {6]
u,—u.=D(l +a—u)exp(—d/u} (45)
u (0, 6)=0, >0,
u(l, =1, t=>0,
u(z, 0)=1, 0<zg1,

T
=)
<
P
c e
L)
©

T3]

_

™

d 1 1 1 T 1

=5.9 =3.8 -1.8 1.2 3.0 5.0
z
FIG. 11. Lax problem, density distribution at time / =1 4.
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i nnu

FIG. 12, Temperature distribution in the reaction-diffusion problem
at different output times. Plots are from Ref. [6].

where D= Rexp(d)/(ad) and R, 4, a are constants, was
soived using the approximate equtions technique described
in Egs. (31), (33). The solution represents a frontal
phenomenon of the temperature of a reactant in a chemical
system.

In the beginning of the calculation the temperature
gradually increases from unity with a “hot spot” forming at
x=0. When ignition occurs the temperaturc increascs
rapidly to 1 + @ and the flame propagates from left to right.

Same parameter values, a =1, § =20, R =3, were used as
in [6], where this problem has also been used as a test
example. It is obvious that the difficulty of the problem is
related to the choice of d. In addition, very short time-steps
must be used to describe the propagation of the flame
accurately and this may cause problems with approximate
equations, because ¢ in Eq. (33) becomes very small and the
handling of the source term is difficult.

-

x b
~+
1

70T 71T 1 r 1 rr 1 r—1r 1 T 1 1
6.0 1.8 Z.0 3.9 4.0 5.e G.e 7.9
Z

FIG. 13, Convection—diffusion problem. Soluticns at time =1 and
t=4. The solid line is an exact solution (¢ =1, 1 =0.5}.

In Fig. 12 are the results of the problem. The plots are
taken from the figure of Ref. [ 6], where the output times are
t=0.26, 0.27, 0.28, 0.29 and where it is said that the
reference solution should be exact, except perhaps in the
neighbourhood of z=0 at = 0.26. Results calculated by
PLIM are at times t =0.259, etc. This means that the error
in time-integration is about 0.001 {10 —2). In the beginning,
time-steps of size 0.01 were used. Then they were shortened
to 0.002 and, when the ignition occurs and the flame
propagates rapidly, very short time-steps of size 0.0005 were
used. Still the number of time-steps is reasonable, e.g., less
than in the caiculations in [6]; 41 mesh points were used.
Although the reference plots are only estimated from the
figure and hence they are not very accurate, it is obvious
that the flame propagation can be described accurately with
AHET and PLIM.

4.4. Convection—Diffusion

ExampLE 6. AHET was next applied to soive convec-
tion-diffusion problems. With initial conditions
u(z, 0) =sin(z), ze [0, 2n]

and using periodic boundary conditions, Eq. (30) has the
exact solution [7]

u(z, ty=sin(z — vt) exp{ — i1).

In Fig. 13 the results are at time t =1 and t =4, where v =1
and A=0.5. The discretization used was Ar=0.1 and
Az =0.3927. Agreement with the numerical solution of the
approximate equations and the exact solution of Eq. (30) is
good.

Figure 14 shows the results for the test case, where we
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@ | T ¥ T 1
9.0 198.@ 20.9 3.9 49.0 50.0

FIG. 14. Convection—diffusion problem. Qutput times are at =0,
t=10,and =20 {v=1, i=0.5).
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have solved the convection and diffusion of an originally
sharp-edged pulse, using v =1 and 41 =10.5. It is a very good
test for the approximate equations technique. We can see
that the symmetry of the pulse is conserved. Comparison
with the results calculated with the parabolic equation
library code of NAG [8] shows that the shape of the puise
is fully correct.

4.5. Burgers Equation

Now AHET is applied to a more difficult case, where a
non-linear convection term is included. A familiar Burgers
equation is of the form

ExaMPLE 7. In this test case the following homoge-
neous Dirichlet boundary conditions were used

u(—1,t)=ufl, 1)=0,
and the initial state,

u(z, 0)= —sininz), i<z

The solution to this problem develops a very steep gradient
in the centre of the domain. After the slope reaches the
maximum, it decreases because the initial energy is
dissipated away.

As in [9], the viscosity parameter A= 0.01/7 is chosen.
This parameter determines the maximum slope. In Fig. 15
the calculated results are at r=0.1, 0.2, 0.3, 04, 0.5. The
maximum slope should be reached at time 7 = 0.5 and this is
also predicted by PLIM. Comparison with the results of the
reference solution in [9] affirms that the Burgers equation
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FIG. 15. Burgers equation. PLIM results to symmetric sine wave
problem, The maximuwm slope is reached at + =0.5.

FIG. 16. PLIM solution to Burgers equation with moving shock.

can be solved accurately with the approximation used in
this kind of problem. The discretization used was A4¢ = (.02,
4z=0.04.

ExampLE 8. The same Dirichlet boundary conditions
were used as in Example 7, but the initial state was
u(z, 0) =sin(2rz) + 0.5 sin{nz), Oz 1.
The solution is a wave that first develops a very steep
gradient and subsequently moves towards z=1. The
viscosity parameter 2 = 1077 81 mesh points were used.
Figure 16 shows the results, There are some oscillations
near z=0 and near z=1 when 7= 1. This is caused by
characteristic velocities which change their signs in the
neighbouring mesh cells. When the resulis are compared 1o
the reference solution in [6], one can see that there is a
slight error in the wave speed from ¢=0.2 to t=0.6. This
may be considered approvable, since the problem is non-
linear and because in this problem the value of the viscosity
parameter A is very small and, hence, a very steep gradient
is formed and a more accurate solution would require more
mesh points to be used in the neighbourhood of the
gradient. However, because of the moving wave, an
unreasonable dense discretization mesh should be used.

5. DISCUSSION

The generalization of PLIM to two or three dimensions
is not straightforward, since the proper multidimensional
piecewise linear interpolation shows it to be of enormous
complexity. In general the two- or three-dimensional algo-
rithms are obtained by applying a one-dimensional scheme
to all the Cartesian directions. The corresponding applica-
tion of PLIM alone or of PLIM, together with some other
scheme, is fully feasible, The demain of the problem is
divided into channeis. The one-dimensional equations of the
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form of Eq. (1) are obtained by integrating over the trans-
verse direction and by removing the transverse fluxes into
the source term. Of course, the shape-preserving property of
PLIM is then partly deteriorated.

6. CONCLUSION

The applicability and accuracy of a new method PLIM
for solving hyperbolic partial differential equation systems
has been shown in several frontal phenomena cases. Various
difficult flow problems {sece Table 1), such as the strongly
convective problem, the convection—diffusion problem, and
the reaction—diffusion problem, have been solved using
PLIM, showing the excelient accuracy and the generality of
the method. In addition, the approximate hyperbolic
equations technique (AHET) produces the corresponding
accuracy for parabolic differential equations and derivative
terms of second order.
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